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INFERENCE FOR WRAPPED SYMMETRIC a-STABLE 
CIRCULAR MODELS 

By RICCARDO GATTO 
University of Bern, Bern, Switzerland 

and 

S. RAO JAMMALAMADAKA 

University of California, Santa Barbara, USA 

SUMMARY. This article provides accurate approximations for the distribution of 

the length of the resultant as well as for the conditional distribution for the circular 

mean given the resultant length, when the data come from a wrapped symmetric a-stable 

model. Since the latter distribution is asymptotically independent of the concentration 

parameter for a given value of the resultant length, it can be used for inference on the mean 

direction when the concentration parameter is unknown. The value of the saddlepoint 

methods lies in making such asymptotics available for very small sample sizes. Besides 

possessing important theoretical properties, this class of circular models is very rich and 

includes the wrapped normal and the wrapped Cauchy distributions as special cases. These 

distributional results allow one to employ this broader class of parametric distributions 

instead of the von Mises distribution, as is typically done with circular data. 

1. Introduction 

In many scientific disciplines observations are directions and are referred 

to as "directional data". In particular, two-dimensional directions, which can 

be represented as points on the unit circle, are called "circular data". Exam 

ples of directional data can be found in various fields: directions of r?manent 

magnetism are sometimes used to interpret possible magnetic pole migra 
tions during geological time, directions of migratory of birds provide relevant 

information in ornithology, etc. (see Fisher, 1993, Mardia and Jupp, 2000, or 

Jammalamadaka and SenGupta, 2001 
? from here on, JS, 2001). Generally, 
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any periodic phenomenon with a known period, like circadian rhythms, can 

be represented by a circular model. Wrapped distributions provide a rich and 

useful class of models for circular data. The special cases of the wrapped 
normal (WN) and the wrapped Cauchy, going back to Levy (1939), are 

widely discussed (cf. Mardia, 1972) and our attention in this paper is on the 

general wrapped symmetric a-stable (WSaS) class. 

If X is any continuous random variable on the real line with absolutely 
continuous distribution function G defining a density #, the density function 

/ of the circular random variable, _Ymod(27r), is obtained by wrapping g 
around the circumference of a circle, i.e. by f(9) 

= 
_CJ__-oo _7(#+2J7r), for 0 G 

[0,27r). The corresponding distribution function would be given by F(9) 
? 

X.^._oo[G(0 + 2j7r) 
- 

G(2jn)]. Equivalent^, when / belongs to ?2[0,2tt), 
the Hubert space of square integrable functions on [0,2^r), a wrapped density 
function can be represented by the discrete Fourier transform 

-1 00 

/(?) = 
^ ? ?_exp{-4_0}, (1) 

3--0C 

where 1 = 
\/?T, and ipj 

= 
(p(j) is the jth Fourier coefficient obtained from 

<p(t) 
= 

E[exp{?i_Y}]. The equality in (1) is meant in the ?2-sense and the 
series in the right-hand-side of (1) is known to converge to /: pointwise if/ is 

differentiable, or uniformly if / is C2. In this article, our focus is on the class 

of wrapped a-stable distributions, which derive from the widely used a-stable 

distributions on R that possess many important properties. We denote an 

a-stable random variable by Sa(T, ?, ?j) where a G (0,2], ? E [?1,1], t G R+ 
and fi G R are the indexes of stability, skewness, scale and shift, respectively. 

When ? 
= 

0, the subclass 5a(r, 0,//) is symmetric about //. An a-stable 

random variable Sa(T,/3,??) can be characterized by the fact that it has a 

domain of attraction, i.e., there exist a sequence {In} of independent and 

identically distributed (i.i.d.) random variables and sequences {an} and {bn} 
of real positive numbers such that, as n ?> 00, 

'-r1- +an -> Sa(r,?,?). 
On 

Hence, the a-stable class provides various limiting distributions, with the 

standard Central Limit Theorem as a special case (Yi with finite variance 

and a = 
2). A property of an a-stable random variable is that, for a G 

(0,2), E[|S'a(r,/3,/i)|p] < 00 only when p G (0, a), so that such random 
variables do not have a finite variance, except when a = 2. For a complete 

presentation, see e.g. Feller (1971), or Samorodnitsky and Taqqu (1994). 
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The a-stable class is widely used, especially in finance (see e.g. Fama and 

Roll, 1968). Wrapped a-stable distributions are constructed via (1) by using 
the characteristic function of the a-stable of the real line, given by 

_ f exp{-ra|i|Q[l 
- 

tjSsgnttan *f ] + i?t}, if a (0,1) U (1,2], ^W ~ 

\ exp{-r|t| + ?/it}, 
~ 

ifa=l. 

The Fourier coefficients for a wrapped circular random variable correspond 

to the characteristic function at integer values for the unwrapped random 

variable (see e.g. Mardia, 1972, equation (3.4.25)). Thus, using (1), the 

density function of a wrapped a-stable random variable for 0 G [0,2n), is 

given by 

f(?) = 
? 

+ 
\ ? exp{-r?r} cos ?j(0 

- /i) - raf? tan 
^} 

, (2) 
i=i 

when a E (0,1) U (1,2], and ?j, is conveniently redefined as // 
= 

/?mod(27r). 

Sometimes, r is reparametrized by using the concentration parameter p 
= 

exp{?Ta} (see JS, 2001 equation (2.2.18)). Two well known examples of 

a-stable random variables for which the density function admits a closed 

form expression are the normal with mean ?jl and variance 2r2, denoted as 

52(r,0,/i) or as N{?jl,2t2), and the Cauchy 5i(r,0,/?), with density function 

2r/(7r[(x-/i)2+4r2]). The WN distribution corresponding to (2) with a = 2 

(? is then irrelevant) has the density given in (9). This is known to provide 
reasonable approximation and is similar in shape to the von Mises density 

(see e.g. JS, 2001, p. 45). The wrapped Cauchy distribution corresponds to 

the case a = 1 and ? 
= 0. The practical importance of this wrapped a-stable 

class can be explained as follows. From the fact that the Fourier coefficients 

of a wrapped circular model correspond to the characteristic function at 

integer values of the unwrapped model, one can directly deduce that many 

of the important properties of linear a-stables, as e.g. domain of attraction, 

closure under convolution, etc., are maintained after wrapping. Secondly, 

both the currently used von Mises distribution and the WN distribution 

do not provide sufficient degree of flexibility, within the class of symmetric 

distributions. We reproduce in Figure 1 some examples of WSaS densities for 

various choices of dispersion parameter r and shape parameter a. Values 

of a smaller than two lead to densities with heavy tails which cannot be 

reproduced by WN densities with larger variance. In Figure 1, we plot over 

[?7T,7r) three WSaS densities with a = 
0.4, 0.8, 1.2 and r = 1 (solid lines), 

and three WN densities (a 
= 2) with r = 0.5, 1, 1.2 (dashed lines). All 
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densities have ?i 
= 0. The various curves are easy to identify, since small 

values of a correspond to heavy tails, and large values of r correspond to 

high dispersion. We can see that a WN density with the same extreme 

tail value as another WSaS density, would differ substantially in shape. To 

conclude, just as on the real line, WSaS densities allow for arbitrarily heavier 

tails than can both the WN density or the von Mises density, the latter also 

called circular normal and defined as 

m = 
2?^eXp{/tC?S(0~M)}' 

(3) 

where In is the modified Bessel function of order n, and k > 0 is the con 

centration parameter. 

3 71 

Figure 1. WSaS densities with a = 
0.4, 0.8, 1.2 and r = 1 (solid lines), and 

with a = 2 and r = 
0.5, 1, 1.2 (dashed lines); all with fj, 

= 0. 
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Clearly the WSaS class can provide better fit to data than the usual von 

Mises or WN distributions do and, as an illustrative example, we consider the 

cross-bedding azimuths data (with sample size 298) for the middle Kamthi 

formation described in Sengupta and Rao (1966, Table 1), where the von 

Mises model is not a suitable model. We computed the chi-square goodness 
of-fit with the WSaS distribution with a = 

1.6, and with the von Mises 

distribution. The parameters of the WSaS distribution were estimated with 

the trigonometric method of moments estimator given in Section 3.1 (we 
obtain ? 

= 0.016 and f = ? 
(log?)1//a 

= 
0.474), and the parameters of the 

von Mises distribution were estimated by the maximum likelihood method 

(we obtain ? 
= 0.016 and k = 

2.260). The P-value of the test for the WSaS 

distribution is 0.091, whereas the P-value for the von Mises distribution is 

0.013, indicating a better fit for the WSaS class of distributions. 

The organization of the rest of this article is as follows. Section 2 gives 
a saddlepoint approximation for the resultant length and provides some nu 

merical results illustrating its accuracy under the uniform as well as under 

the WN distributions. These saddlepoint approximations provide very ac 

curate approximations to P-values and to the power function of a test of 

uniformity against alternatives in the WSaS class. Section 3 introduces es 

timators for the parameters of WSaS distributions based on trigonometric 

moments, and proposes a method for testing hypothesis on the mean direc 

tion within the WSaS class using a conditional saddlepoint approximation. 

Section 4 provides a short discussion, and the important proofs can be found 

in the Appendix. 

2. A Saddlepoint Approximation for the Distribution of the 
Resultant Length 

In this section we mainly adapt the saddlepoint approximation to the 

problem of computing the distribution of the resultant length of n indepen 
dent vectors in R2 when the distributions of their angles and of their lengths 
are given. A conditional saddlepoint approximation that can be used for in 

ference on the mean direction is derived from this saddlepoint approximation 
in Section 3.2. The saddlepoint approximation was introduced into statis 

tics by Daniels (1954), for deriving a very accurate approximation to the 

density function of the sample mean. Since then, it has been generalized 
to a variety of situations. It is known to provide approximations to small 

tail probabilities with high numerical accuracy, even with very small sample 
sizes. The exceptional tail behaviour of the saddlepoint approximation is 
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also a consequence of its bounded relative error, at most of the order n"1, 
and this uniformly over arbitrary compact sets. In contrast to this, the Edge 
worth expansion is less accurate and it inherits the undesirable oscillations 

from its Hermite polynomials, sometimes leading to negative tail probabili 
ties. Several extensions of Daniel's original formula have been proposed, see 

for example: Lugannani and Rice (1980) for tail probabilities, Field (1982) 
for M-estimators, Skovgaard (1987) for conditional distributions, Gatto and 

Ronchetti (1996) for marginal densities, etc. Some general texts or reviews 

are: Barndorff-Nielsen and Cox (1989), Field and Ronchetti (1990), and 
Field and Tingley (1997), the latter with emphasis on robust statistics. 

In general, the resultant length Rn plays a central role in circular data 

analysis. For example, it can be seen as the total distance covered by a 

random walk where, after each step, the direction turns randomly through 
a specified angular distribution, and the length is either fixed or is governed 

by some other distribution. For the specific case where the vectors have 

unit length and their angular distribution is uniform, as in Pearson's ran 

dom walk, the exact distribution of the resultant length Rn is given by the 

Kluyver integral, see Section 2.1. The distribution of Rn for other circular 

distributions is rather complex. Also, in view of the fact that the locally 
most powerful invariant test for testing Ho: p 

= 
0, i.e. uniformity, against 

Hi: p > 0 within the WSaS class is of the form Rn > c (see Theorem 

6.6, p. 142, JS, 2001), the distribution of Rn under uniformity provides the 

critical values whereas the distribution under the alternatives can be used 

to find the power function of such a test. Proposition 2.1 below provides a 

saddlepoint approximation in a general setting which can be used to obtain 

the distributions under these WSaS alternatives. In Proposition 2.2 we pro 

vide the cumulant generating function which is the central component of the 

saddlepoint approximation. In Section 2.1, we provide numerical results of 

the saddlepoint approximation for the distribution of Rn when the data arise 

from a uniform distribution, i.e. under the null hypothesis above. Numerical 

results for the WN alternative are reported to Section 2.2. 

PROPOSITION 2.1. Suppose we have n independent random vectors in 

H2, with polar coordinates {0\,r\),..., (0n,rn); where 0{ E [0, 2-k) is the 

direction and r? > 0 is the length, i = 
1,..., n. For A = 

(Ai, A2)T E R2, we 

define 
n 

Kn{\) = 
^log{E[exp{r?(Aicosoi +A2sin?i)}]} (4) 

*=1 

as the sum of the cumulant generating functions of each sample value, in 



WRAPPED SYMMETRIC a-STABLE CIRCULAR MODELS 339 

terms of the Cartesian coordinates (r? cos 0_, r? sin0?), i = 
1,..., n. Let 

Rn 
= 

f n \ 2 / n \ 2 

^ r? COS 0? J + I ]T r? sino? 
^?=1 / \?=1 / 

6e ?/_e sample resultant length. If 

hn(X) = [det #;'(A)]? exp{Xn(A) 
- 

AT<(A)}, (5) 

2?(r) = {A G R2 | |K(A)|| < r}, and Fpn(r) = ?- 
/ /in(A)c/A, 

__7T 
7x>(r) 

then, for r > 0, we have 

P[Rn<r} = Pvn(r) [1 + 0(n-1)], (6) 

as n ?> oo. In the above expressions, K'n(\) 
= 

d/d\Kn(X), K'^(\) 
= 

d21(dX1dX)Kn(X), and \\ || denotes the Euclidean norm. 

For a proof of this, see the Appendix. 

Remark 2.1. From a practical point of view, it is important to note 

that the two-dimensional integral defining P-pn can be computed over the 

domain of the cumulant generating function, i.e. with respect to A, the 

argument of the cumulant generating function, instead of i, which is a point 
in the domain of the sum of cosines and sum of sines (see also the Appendix). 
It is hence not necessary to solve a large number of saddlepoint equations 

K'n(X) 
? t at each point t of the two-dimensional grid of integration (of the 

sum of cosines and sum of sines), as we would do if we were to integrate the 

joint saddlepoint approximation directly with respect to t. This makes Px>n 

useful for applications. 

Remark 2.2. It is easy to see that the domain of integration, charac 

terized by \\K'n(A)11 < r, forms a simply connected set in the domain of the 
cumulant generating function. When r < oo, V(r) is hence a compact set. 

This domain is not necessarily convex, and its central point is given by the 

stationary point of Kn(X), i.e. by A = 
(0,0)T. 

REMARK 2.3. Given (0_,ri),..., (9n,rn) i.i.d., the bootstrap or non 

parametric version of the saddlepoint approximation is obtained by using the 
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empirical distribution of the sample in (4), yielding the bootstrap cumulant 

generating function 

Kn{X) 
= -nlogn + nlog< ]Texp{r?(Ai cosfy + A2sin#?)} > . 

The bootstrap saddlepoint approximation to the distribution of Rn is ob 

tained by applying Kn in Proposition 2.1, and it has relative error 0P(n-1) 
with respect to the bootstrap distribution (that would be obtained with a 

very large number of resamplings), see Wang (1990) for justifications. 

The next proposition gives the form of the cumulant generating function 

for a WSaS underlying distribution, which allows to compute the saddlepoint 

approximation of Proposition 2.1 in this case. 

PROPOSITION 2.2. Given a random angle 0 E [0,27r) with a WSaS 

distribution, the cumulant generating function of (coso,sin0)T is given by 

K(A) = 

log|/0(||A||) 
+ 

2f;exp{-r?r}cos{i[/u-arg{A1+6A2}]}Jj(||A||)i) 

(7) 
where Ij is the modified Bessel function of the first kind of integer order j. 

For a proof of this, see the Appendix. 
With K given by (7), taking Kn = nK in Proposition 2.1 gives the 

saddlepoint approximation for n i.i.d. unit vectors with WSaS angles. 

2.1 Uniform null distribution. In the following example we consider the 

case where the angles are independent with uniform distribution and where 

the associated vectors have unit length. As previously written, the saddle 

point approximation to the resultant length can be used for obtaining the 

critical values of the test Ho: p 
= 

0, against Hi: p > 0, within the WSaS 

class. This approximation could however also be settled in the context of 

the classical Pearson's random walk problem. 

Example 2.1. Suppose we have n unit length independent vectors in 

R2, with angles 0\,..., 0n uniformly distributed over [0,2ir). The cumulant 

generating function (4) for this case is the limiting value of (7) as r tends to 

infinity, 

K?(A)=nlog{/0(||A||)}. (8) 
For this simple case, it is known (see e.g. Mardia, 1972, p. 94) that the 

exact distribution of Rn can be obtained by Kluyver's integral, i.e. by 
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P[Rn < r] 
= r Jq?? Jq(v)J\ (rv)dv, Jn denoting the Bessel function of the 

first kind of integer order n. Moreover, an asymptotic approximation to this 

probability (provided by Rayleigh) is given by 1 ? 
exp{?r2/2}. In Table 1 

we have the cumulative distributions of the resultant length, computed by: 
numerical integration (values tabulated by Greenwood and Durand, 1954), 

by our saddlepoint approximation (6), and by the Rayleigh's approximation 
above. These distributions are respectively denoted by: Pe, Ps, and Pr, 

and we refer to Pe as the "exact" distribution. Table 1 shows that with 

the sample size n = 7 the saddlepoint approximation performs very well in 

the tails of the distribution, reflecting the fact that it has a bounded rela 

tive error. Table 1 also indicates that for n = 
7, the critical region of the 

test of uniformity against WSaS alternatives with size a = 0.05 is approxi 

mately [4.5,7], according to both the exact distribution and the saddlepoint 
approximation. 

Table 1. Resultant length under uniformity of angles and fixed 

INDIVIDUAL LENGTHS: EXACT DISTRIBUTION (Pe), SADDLEPOINT (Ps), 
and Rayleigh (Pr) approximations; n = 7. The exact 

PROBABILITIES WERE OBTAINED BY NUMERICAL INTEGRATION. 

r PE[Rn < r] Ps[Rn < r] PR[Rn < r] 
0.5 0.032 0.031 0.035 
1.0 0.125 0.124 0.133 

1.5 0.261 0.258 0.275 
2.0 0.418 0.413 0.435 
2.5 0.575 0.572 0.591 
3.0 0.714 0.709 0.724 
3.5 0.823 0.821 0.826 
4.0 0.900 0.899 0.898 
4.5 0.951 0.951 0.945 
5.0 0.979 0.980 0.972 
5.5 0.992 0.995 0.987 

6.0 0.998 1.000 0.994 

Remark 2.4. Note that, because of the U-statistic representation of 

the squared resultant length, R2 = n + _T 5__?-tj cos(0_ 
? 

0j), the distribution 

of Rn could also be approximated by the general saddlepoint approximation 

given by Gatto and Ronchetti (1996). 

Remark 2.5. Under uniformity of the angles 0?, the general case with n 

independent random vectors in R2 with polar coordinates (0Z, r?) with 0? and 

r? independent, i = 
1,... ,n, could be simplified as follows. By considering 
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the expansion of the function Iq, it can easily be seen that 

n 
| oo 

] 

?=i [ j=i ) 

where Pj 
= 

/r^dFi{r), F{ representing the distribution of the ?th length 
n, and cj(\) 

= (||A||2V[2^!])2 (e.g. Cl(A) = ||A||2/4, c2(A) - ||A||4/64, 
q(A) 

= 
||A||6/2304, etc.). This Kn can be directly inserted in the saddlepoint 

approximation (6). 

2.2 WN alternative distribution. Wrapping the normal random variable 

with mean p and variance a2 around the unit circle leads to the WN random 

variable, namely WN{p,a2) 
= 

^(cr/v^, 0,/i) mod(27r). According to (2), 
its density function is given by 

1 1 ?? 1 
/(0) 

= 
;T + -?exp{--;V}cos(j[0-H), 0e[O,27r). (9) 
Z7T 7T T"-; I 

3 = 1 

This can be seen as the particular alternative Hi: p 
? 

exp{?a2/2} > 0 with 

a ? 
2, in the context of the locally most powerful invariant test of uniformity, 

and the saddlepoint approximation provides the value of the power function 

at such alternative. The following example shows the effectiveness and the 

numerical precision of the saddlepoint approximation. 

Example 2.2. We consider a sample of size n ? 6 independent unit 

vectors with angles from the WN distribution, with p 
= 0 and a2 = 4. The 

cumulant generating function for this particular case is directly obtained 

from (7), yielding 

iin(A)=nlog|/o(||A||) 
+ 

2f;exp|-^|coS{j[arg{A1+lA2}-M]}/J(||A||) 
(10) 

The first and the second order derivatives of Kn, necessary for the com 

putation of the saddlepoint approximation can be obtained with the help 
of automatic symbolic computation (Maple). The infinite sum in (10) con 

verges very fast, so that only the first few summations are necessary for 

numerical evaluations. Table 2 gives the saddlepoint approximation of the 

distribution of RTl, after renormalization. The distributions appearing in Ta 

ble 2 are: Pe, the "exact" distribution based on 106 Monte Carlo samplings, 
and Ps, the saddlepoint approximation. As in the previous example, we can 
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see that the saddlepoint approximation is extremely accurate. We next give 
the absolute and the absolute relative errors, respectively given by |Pe 

? 
Ps| 

and |Pe 
? 

Ps|/min{PE, (1 
? 

Pe)}- Figure 2 shows that the absolute error 

is generally very small, and that the absolute relative error remains gener 

ally bounded below 10%, if we except one small peak at about 0.02 due to 

the error in the numerical integration (V(r) is discretized by small squares 

and hn is evaluated at the centers of these squares only), and another peak 
as we approach 1, which is due to the limiting small denominator in the 

computation of the absolute relative error (see Table 2). 

Table 2. Resultant length under WN angles and fixed individual lengths: 

EXACT DISTRIBUTION (PE) AND SADDLEPOINT APPROXIMATION (Ps); \l 
? 

0, G2 ? 
4, 

n = 6. The exact probabilities were obtained by 106 Monte Carlo simulations. 

r PE[Rn < r] Ps[Rn < r] 

0.5 0.036 0.035 
1.0 0.129 0.126 

1.5 0.266 0.267 
2.0 0.434 0.424 

2.5 0.595 0.584 
3.0 0.734 0.725 
3.5 0.844 0.836 
4.0 0.921 0.915 

4.5 0.965 0.963 
5.0 0.988 0.988 

5.5 0.998 0.999 
6.0 1.000 1.000 

3. Inference on Parameters of WSaS Distribution 

3.1 Trigonometric method of moments estimators. One can see from (2) 
that reductions through sufficiency and invariance are generally not available 

for WSaS distributions (especially for inference on the mean direction), and 

the maximum likelihood approach, which would remain purely numerical, 
can hardly yield useful theoretical insights. We propose a class of estimators 

obtained by extending the method of moments estimation of the Cartesian 

coordinates case. In this case, it is often convenient to reparametrize in terms 

of the concentration p 
? 

exp{?ra}. For j 
= 

1,2,..., the jth trigonometric 
moment of any circular random variable 0 is given by 

E[eije] 
= 

E[cos(?0) + Lsm(j9)] 
= 

Pje^, (11) 

the last expression is in polar coordinates so that pj=|E[cos(j0)]+?E[sin(j0)]| 
and ?jij 

= 
arg{E[cos(j0)]+?E[sin(j0)]}. From the fact that the Fourier coeffi 

cients of a wrapped random variable are the characteristic function at integer 
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0.014 

0.4 0.5 0.6 
Exact probability 

0.4 0.5 0.6 
Exact probability 

0.8 0.9 

Figure 2. Saddlepoint approximation for the distribution of the resultant 

length under the WN distribution, ?jl 
= 

0, a2 = 
4, n = 6. Upper fig 

ure: absolute error |Pe 
? 

Ps|- Lower figure: absolute relative error |Pe 
- 

Ps|/min{PE, (1 ?Pe)}- Pe: exact distribution obtained by 106 simulations. 

Ps: saddlepoint approximation to the distribution. The abscissae are the 

exact probabilities. 
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values of the corresponding unwrapped random variable, we have for the 

WSaS case 

E[e?^] 
- 

pW*?M, 

so that, together with (11), 

Pj 
= 

pja and pj 
= 

jp. 

Replacing these pj and pj by their sample versions, for j 
= 

1, we obtain 

{n 

n ^ 
y^ cos fl? + ?y^sinflj >, 
?=1 ?=1 J 

which will be referred to as the trigonometric method of moments estimators 

(TMME) of p and p, based on the first trigonometric moment. 

Example 3.1. In this example we derive the TMME of a2 = 2r2 

for the WN distribution, its influence function, as well as the saddlepoint 

approximation to its distribution, which is a simple transform of the one for 

the resultant length given by (6). Equating e~a I2 to R = 
n~lRn, the mean 

resultant length, and solving for a2, gives the TMME of a2, 

cr2 = 
-21og{i?}. (12) 

Let F denote the underlying WN distribution, and let F denote the em 

pirical distribution of a sample drawn from F. Clearly a2 admits a functional 

representation denoted T{F). From there, the influence function of T at F, 
at a point 0 E [0,2n) can be easily computed with 

IF{0; T, F) = 
?T((l 

- 
e)F + e&e)\e=o 

= 
2[1 

- 
exp(a2/2) cos(0 

- 
p)}, 

where A# is the Dirac distribution with mass one at 0. The influence function 

measures the standardized effect on the estimator resulting from a contam 

ination of F at point 0. This influence function is plotted in Figure 3, in 
both Cartesian and polar coordinates, for the WN case with p 

= 0 and 

a2 = 4. In these plots, we can also see that the gross-error sensitivity, de 

fined by -y{T,F) 
= 

sup0\IF{0;T,F)\, is finite (7 
= 

16.778). Hence, a2 is 

bias-robust, since the gross-error sensitivity measures the largest bias that 

a contamination can induce to the estimator. The smooth behaviour of 

the influence function shows also that the estimator would slowly fluctu 

ate after small fluctuations in the observations. This is formally measured 

by the local-shift sensitivity 8up$1?02\IF(OnT,F) 
- 

JF(02;T, F)|/|0i 
- 

02\. 
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The influence function was originally proposed by Hampel (1974). The 

saddlepoint approximation to the distribution of a1 in the WN model is 

based on (6) because of the relation P[a2 < s] 
= 1 - P[Rn < ne~5//2]. It 

is hence given by 1 - Pvn{ne~s/2), and the saddlepoint approximation to 

the density would be px>n(r_e~s/2)n e~5//2/2, where pvn{s) 
? 

d/dsPr)n{s). 

Figure 4 gives this approximation for the distribution of ?r2, for n = 6 

WN(0,4) independent observations, as well as the exact distribution based 

on 106 simulations. In order to emphasize the tail behaviour of the ap 

proximation, the probabilities P[?2 < s] are in the logit scale, that is 

the scale on left axis of Figure 4 is log{P/(l 
- 

P)}, and the scale on 

the right axis is P, where P denotes both exact and saddlepoint proba 
bilities. As we can see, the saddlepoint approximation behaves very well. 

Polar coordinates, angles in degrees 

Figure 3. Influence function of the TMME of the variance under the WN 

distribution, ?i 
? 

0, a2 = 4. The upper plot is in Cartesian coordinates, and 

the lower plot in polar coordinates. 
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Solid line: exact. Dashed line: saddlepoint. Left scale: log(P/(1-P)). Right scale: P. 

Figure 4. Saddlepoint approximation for the distribution of the TMME of 

the variance under the WN distribution, ?i 
= 

0, a2 = 
4, n = 6. The scale on 

left axis is log{P/(l 
? 

P)}, and the scale on the right axis is P, P denoting 
both exact and saddlepoint lower probabilities. The exact probabilities are 

obtained by 106 simulations. Solid line: exact. Dashed line: saddlepoint. 

REMARK 3.1. This TMME can be extended by using the second trigono 
metric moment to the estimation of the stability index a. This estimator 

admits a simple representation, even though the estimation in the (non 

wrapped) symmetric a-stable models is complicated (see e.g. Fama and 

Roll, 1971). 

3.2 Inference on the mean direction. In this section we discuss the prob 
lem of inference on the mean direction p of a WSaS model, when the scale 

parameter r or the concentration parameter p are unknown. We propose a 

procedure for testing hypotheses which exploits both a conditional saddle 

point approximation and the trigonometric method of moments estimators 

introduced in Section 3.1. In this procedure, the nuisance parameter p, 
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equivalently r, is eliminated by conditioning on the resultant length. In a 

first step, Proposition 3.1 gives the asymptotic normal distribution of the 

tangent of the mean direction, and shows that this distribution depends on 

the nuisance parameter p. In this context, Gatto (2000) proposes a simulta 

neous test on the mean direction and the scale parameter with a test statistic 

based on the exponent of the saddlepoint approximation of the density of M 

estimators, which is asymptotically chi-squared distributed, up to the second 

order. 

Proposition 3.1. Suppose 0i,...,0n are i.i.d. WSaS random angles 
in [0,2n), i.e. with trigonometric moments given by E[eLi6] 

= 
p'-7' ew', j 

= 

1,2,.... Let ? 
= 

arg{X^=i cos 0. +1 _C?=i sin0?} be the associated TMME of 

p associated with these random angles. Then the limiting distribution of the 

tangent of the mean direction is given by 

>/n(tan/i-tan/Li) 4 iV(0,C2), (13) 

where 

,2 _ 1-P 

2p2 cos4 p 

is the asymptotic variance. 

For a proof, see the Appendix. 

Proposition 3.2. Suppose 0i,..., 0n are i.i.d. random angles in [0,2n) 
with mean direction p G [0,2tt). For X = 

(Ai,?2)T G H2, we define Kn(X) 
as in (4) and hn(X) as in (5). Then, for r > 0, 9 G [0, 2tt), 

C(r) = {AeR2| |K(A)||=r}, 
A(0) = {ACER2 I 0<arg{i_;i(A) + ?i.;2(A)}<o}, 

arg defined in [0,27r), and for 

PjCn{e | r) _ 
icfA^.d\ 

(14) 

we have, 

P[O<?<0\Rn = r} = PMn{0 | r) [1 + 0{n~% (15) 

as n -> oo, where 
K'nj(\) 

= 
d/d\jKn(\i,\2), j 

= 
1,2. 
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For a proof, see the Appendix. 

REMARK 3.2. We can note that C{r) is the circle of radius r in the sum 

of cosines and sum of sines domain, whereas C{r) 0 A{0) is the arc of the 

same circle corresponding to all angles in [0,0). In the cumulant generating 
function domain, these correspond to a closed path and to a portion of 

this path, respectively. Integrating in this latter domain is convenient, as 

explained by Remark 2.1. 

REMARK 3.2. By (5), l/(27r)/in(A) gives us the saddlepoint approxima 
tion to the joint density of {Yl?=iricos&i)Yl?=i r?sino?) at t ? 

K?(A). By 
a simple change of variables we could obtain an approximation to the joint 

density of {p,Rn) at t = 
(0,r), which would be given by r/(27r)/in(A), where 

Kn{X) 
= 

(r cos 0,r sin?). 

Suppose we are interested in testing the hypothesis Ho: p 
= 

/io> for a 

specified po E [0, 2tt), against the general alternative Hi: p ^ po, and with 
size e E (0,1). Since p is a location parameter, p is location equivariant, 
and Rn is location invariant, we can rather refer to the shifted sample 0[ 

= 

0i 
? 

po, to the associated mean direction p! 
= 

p 
? 

po, and to the associated 

null hypothesis Ho: p' 
= 0. From Proposition 3.1, the expression for the 

asymptotic variance under Ho would then become 

^ 
2p2 

" 

From R -> p, Slutsky's theorem, Proposition 3.1 with the shifted sample, 
and an application of the delta-method (noting that arctan'(O) 

= 
1), we can 

assert that under Ho, y/np' is approximately distributed as N{0, (2), where 

^ 
2R2 

' 

The fact that tan(0) 
= 

tan(0 + n) is not a real drawback in showing this 
last equivalence, since a preliminary rough inspection of the data allows to 

distinguish the pole from the anti-pole. It follows that the asymptotic dis 

tribution of the conditional statistic y/npf | R does not involve the nuisance 

parameter p, so that this conditional statistic is asymptotically pivotal. It 

can hence be used for testing an hypothesis on the mean direction. Since the 

saddlepoint approximation under Ho of {p 
? 

po) | Rn, which is substantially 
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y/n?' | ?, is given by Proposition 3.2, a rejection region of size e for this test 
based on the conditional saddlepoint approximation (15), would be given by 

{(01,. - A) e [0,27r)n | 0 < ? 
- 

po < ft or q2<?-po< 2tt}, 

where the quantiles q\ and fc are solutions of PACniQi \ nRobs) 
= 

e/2 and 

PACnifa I n?obs) 
= 1 - e/2, and #obs is a realization of ?. Here, the 

saddlepoint approximation P^Cn is similar to the one given by (14) except 
that the parameter p is replaced by Robs in the formula. This substitution 

is possible as long as second order accuracy is desired. Given R = 
Rohs, the 

quantity ?'/( admits the second order Edgeworth expansion of the form 

$(0) + n4p(0; p, Rohs)(f)(9) + O^"1), (16) 

where <_> and <f> are the standard normal distribution and its density, and 

p(0;p, _Robs) is a polynomial of degree two in 0. From R = 
p + 0P(n~1//2), 

it follows that replacing p by Robs in (16) does not increase the asymptotic 
error, meaning that second order accuracy is maintained. Hence, p can 

similarly be replaced by Robs in the conditional saddlepoint approximation 

(14), if we consider it as a second order approximation to the Edgeworth 

expansion (16). A confidence interval for p with coverage rate 1 - e could 

be defined as the set of values po G [0,27r) for which the sample would be 
outside the rejection region above. 

Remark 3.4. It is shown that applying this same conditioning to the 

mean direction in the von Mises model, determined by (3), would totally 
eliminate the dependence on the nuisance parameter n > 0. Indeed, under 

the von Mises model, the conditional distribution of the mean direction given 
the resultant length does not depend on the concentration parameter k at 

all (not only asymptotically). 

Remark 3.5. In the bootstrap case, the saddlepoint approximation can 

also be used to obtain second order accurate confidence intervals in conjunc 
tion with the bias-corrected accelerated (BCa) method by Efron (1987). The 

saddlepoint approximation to P[0 < ? < 9] can be obtained by integrating 
the joint saddlepoint approximation of the density of the sum of cosines and 

sum of sines over an appropriate slice of its domain. More precisely, we would 

need to consider the bootstrap version of P4n(0) 
= 

?mo) hn(X)dX/(2n), 
which we denote by P4n(0). It can be obtained by following the lines in 
Remark 2.3. It can be shown that the influence function of ? at point 0, for 
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the WSaS model, is given by sin(/? 
? 

0)1 p. Hence, the acceleration constant 

of the BCa method admits the simple form 

?= u=i^H?-Qi) 

6E?=ism2(?-0?)]?' 

compare with the general equation (7.3) in Efron (1987). The bias-correction 

is given by ?q 
= 

&~l){Pj[n{p)}, where cj>(-1) is the inverse of the standard 

normal distribution, see equation (4.1) in Efron (1987). Hence, the BCa 

confidence interval with coverage rate 1 ? 
2e is given by 

where &{z?) 
= e, and where 

P?n 
' 

is the quantile function of pAn, see for 

mula (3.8) in Efron (1987). In the bootstrap case we can thus avoid the use 

of a pivotal statistic. 

The numerical accuracy of the conditional saddlepoint approximation 

(15) is shown by the following example, for the WN model. 

Example 3.2. In this example we are interested in the distribution of 

the mean direction of n = 6 i.i.d. unit vectors, conditioned to have resultant 

length Rn of 1. The distribution of the random angles of the unit vectors is 

the WN with mean zero and variance ?21og(l/n) 
~ 3.584. We approximate 

the conditional distribution of the mean direction by using the saddlepoint 

approximation provided by Proposition 3.2, with a final renormalization. 

We compute the "exact" distribution based on 95637 retained samples from 

a total number of 2 106 simulations. In the conditional simulation, we 

first generate n ? 1 random angles from the WN distribution. If with the 

unit vectors associated to these n ? 1 angles it is possible, by adding a 

last unit vector, to obtain a total resultant length of 1, then we retain the 

first n ? 1 angles, otherwise we reject them. Once we accept a sample of 

n ? 1 angles, there remain only two possible values for the missing nth 

angle, and one of these two values is randomly selected, according to a 

probability that depends on the underlying WN distribution. The numerical 

results are shown in Table 3, where the exact distribution is denoted by Pe, 
the saddlepoint approximation by Ps, the absolute error and the relative 

absolute error of the saddlepoint approximation by AE =| Pe 
? 

Ps I and 

RAE =| Pe 
? 

Ps I /min{PE,l 
? 

Pe}5 respectively. As we can see, the 

saddlepoint approximation leads to high accuracy over the entire range of 

the mean direction. 
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Table 3. Distribution of the mean direction conditioned to have a resultant 

length 1, of 71 = 6 wn angles with mean 0 and variance -21og(l/6) 
__ 3.584: 

EXACT DISTRIBUTION (Pe), SADDLEPOINT APPROXIMATION (Ps), ABSOLUTE ERROR 

(AE =| PE 
- 

Ps I), relative absolute error (RAE =| Pe 
- 

Ps | /min{PE, 1 - Pe}). 
The exact probabilities were obtained by 95637 retained values from 2 106 

simulations. 

0 PE[?<0] Ps[?<0] AE(9) RAE(0) 

0.157 0.039 0.038 0.001 0.029 
0.314 0.077 0.075 0.002 0.024 
0.471 0.113 0.105 0.008 0.072 
0.628 0.150 0.129 0.021 0.137 
0.785 0.184 0.164 0.020 0.111 
1.100 0.248 0.229 0.018 0.074 
1.414 0.302 0.279 0.023 0.078 
1.728 0.349 0.324 0.026 0.073 
2.042 0.390 0.368 0.021 0.055 
2.356 0.425 0.408 0.017 0.039 
2.670 0.457 0.449 0.008 0.018 
2.985 0.487 0.488 0.001 0.001 
3.299 0.516 0.519 0.003 0.006 
3.613 0.546 0.557 0.011 0.025 
3.927 0.578 0.598 0.020 0.048 
4.241 0.612 0.638 0.026 0.067 
4.555 0.652 0.683 0.030 0.087 
4.869 0.698 0.728 0.029 0.097 
5.184 0.752 0.777 0.025 0.100 
5.498 0.813 0.842 0.029 0.157 
5.655 0.848 0.877 0.029 0.189 
5.812 0.886 0.901 0.015 0.133 
5.969 0.923 0.932 0.008 0.106 
6.126 0.962 0.969 0.007 0.186 
6.283 1.000 1.000 0.000 0.000 

4. Conclusion 

In this article, we motivate the WSaS class for circular models and we 

treat some related inferential problems within this class, by using the TMME 

and the saddlepoint approximation. In all our numerical examples we con 

sidered small sample sizes and the saddlepoint approximations yield very 
accurate results. As in other situations, the saddlepoint approximation is 

a useful and accurate technique, especially in presence small or moderate 

sample sizes, or when extreme tail probabilities are to be approximated. 

Appendix 
Proof of Proposition 2.1. Let us denote by fc,s the joint density 
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of {Y^^iCOsOi^^sinOiy. The joint saddlepoint approximation to fc,s 
at t E R2 is given by, 

9c,s(t) = 
?[det^(A)]"? 

exp{?:n(A) 
- 

AT?}, 

where Kn{X) is the joint cumulant generating function given by (4), and 
A E R2 is the saddlepoint defined by the equation Kn{X) 

= t. It follows that 

fc,s{t) 
= 

3c,s(i)[l + 0(n-1)], and the error term holds uniformly for all t in 
a compact region, see Field (1982) p. 677. A saddlepoint approximation to 

the distribution of the resultant length Rn can be obtained by integrating 

9c,s(t)dt over the compact region {t 
= 

(ti, i2)T G R2 | t\ + t\ < r2}. 
Furthermore, the change of variable of integration t -> A (see Remark 2.1) 
involves the Jacobian det K"{X), and the integral of det K"(X)gcys(K'(X))dX 
over the compact region V{r) (see Remark 2.2) leads to the formula for Ppn 
of Proposition 2.1 and to (6). 

Proof of Proposition 2.2. The joint moment generating function 

at A = (Ai, A2)T E R2 of the cosine and the sine of a WSaS angle is given 
by 

M{X) = 
/ exp{AiCOS0+A2sin0}{?+- Yexp{-raja}cos{j[0-p])\d0. 

Jo v 2ir 7T ~? 
> 

The change of variables from Cartesian to polar coordinates Ai 
= 

pcos i?), A2 
= 

p$m%?), allows to re-express the jth integrand in the sum above as 

1 /*27r ? 
exp{?raja} / exp{p(cosi?)cos0 + sinxpsin?)} cos{j[0 

? 
p])d0. 7T Jo 

By re-expressing the exponent inside the integral as pcos{0 ?1?)), the change 
of variable of integration ? 

? 0 ? 
i\> allows us to identify directly the terms 

i"K PIT 

L{p) 
= 7T~l / exp{pcos0}cos{j0)d0 and / exp{psin0}cos{j0)d0 

= 0, 
Jo Jo 

so that we can eventually find 

00 

M (A) = Io{\\X\\) + 2 ? exp{-rV} cos{^ 
- 

arg{Ai + tX2}]}Ij{\\X\\) 
3=1 

and (7) follows. D 
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Proof of Proposition 3.1. The standard multivariate Central Limit 

Theorem applied to the i.i.d. unit vectors (cos0_, sin0?)T, i = 
1,... , n, tells 

us that 

_}_( Zti( s0i-E[cos01}) \ v 

./EX ?r=1(sin0?-E[sin0i]) 
AT(0,E), 

where 

y, _ / occ ves 

osc oss J 
is the covariance matrix. The elements of S can be identified via the two 

first trigonometric moments of a WSaS distribution, given by (11) with 

j = 1 and j = 2. If we define ? = 
(Cc,?s)T 

= 
(E[cos0i],E[sin0i])T, we can 

identify: ?c 
? 

pcosp, ?s 
? 

psin??, ace 
? 

1/2 + p2" cos(2/i)/2 
? 

p2 cos2/?, 

&cs = &sc 
? 

P2" sin(2/i)/2- p2 cos/i sin/i, and CJ55 = 
1/2 ?p2<* cos(2/?)/2 

p2sin2/i. The delta-method (see e.g. C. R. Rao, 1972, p. 388), as applied 
to the ratio ___E-i sin0,/ J2?=i cos#? leads to the asymptotic variance 

The final expression for (2 is obtained after inserting the values of ? and S 

into (17), with some additional simplifications. D 

Proof of Proposition 3.2. Let us denote by f?,R the joint density 

of (/?, Rn). The conditional density of ? given Rn 
= r, at point u> G [0,27r), 

is given by 

f?Muir) ___ /c,5(rcos(j,rsino;)r __ /c,s(r 
cos cursing;) 

//_(r) J027r /A)?(i/, r)di/ J027r fC)s{r 
cos i/, r sin v)dv 

Integrating this last expression from 0 to 0 G [0,27r), leads to the probability 

P[0 < ? < 9 I Rn = 
r]. Replacing /c,s by its joint saddlepoint approxima 

tion gc,s in both the numerator and the denominator of (18), and making 
the change of variable of integration in order to integrate in the cumulant 

generating function domain, leads to the final result. D 
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